1 | Some Set Theory

Sets.

Frequently used sets:

 \varnothing = the empty set (i.e. the set that contains no elements) N = *{*0*,* 1*,* 2*, . . . }* the set of natural numbers Z = *{. . . , −*2*, −*1*,* 0*,* 1*,* 2*, . . . }* the set of integers $\mathbb{Z}^+ = \{1, 2, 3, \dots\}$ the set of positive integers $\mathbb{Q} =$ the set of rational numbers \mathbb{R} = the set of real numbers

We will write $x \in A$ to denote that x is an element of the set A and $y \notin A$ to indicate that y is not an element of *A*.

1.1 Definition. A set *B* is a *subset* of a set *A* if every element of *B* is in *A*. In such case we write *B ⊆ A*.

A set *B* is a *proper subset* of *A* if $B \subseteq A$ and $B \neq A$.

1.3 Example. Here are some often used subsets of R:

1) an open interval:

2) a closed interval:

$$
(a, b) = \{x \in \mathbb{R} \mid a < x < b\}
$$
\no

\na

\nb

\n[a, b] = \{x \in \mathbb{R} \mid a \le x \le b\}

\na

\nb

3) a half open interval:

$$
(a, b) = \{x \in \mathbb{R} \mid a < x \leq b\}
$$

1.4 Definition. The *union* of sets *A* and *B* is the set *A ∪ B* that consists of all elements that belong to either *A* or *B*:

$$
A \cup B = \{x \mid x \in A \text{ or } x \in B\}
$$

The *intersection* of sets *A* and *B* is the set *A ∩ B* that consists of all elements that belong to both *A* and *B*:

 $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

1.7 Definition. If $A ∩ B = ∅$ then we say that A and B are *disjoint sets*.

Definition 1.4 can be extended to unions and intersections of arbitrary families of sets. If $\{A_{i}\}_{\in I}$ is a family of sets then

$$
\bigcup_{i \in I} A_i = \{x \mid x \in A_i \text{ for some } i \in I\}
$$

$$
\bigcap_{i \in I} A_i = \{x \mid x \in A_i \text{ for all } i \in I\}
$$

1.10 Definition. The *difference* of sets *A* and *B* is the set $A \setminus B$ consisting of the elements of *A* that do not belong to *B*:

$$
A \setminus B = \{x \mid x \in A \text{ and } x \notin B\}
$$

1.12 Definition. If $A \subseteq B$ then the set $B \setminus A$ is called the *complement* of A in B .

1.13 Properties of the algebra of sets.

Distributivity:

$$
(A \cap B) \cup C = (A \cup C) \cap (B \cup C)
$$

$$
(A \cup B) \cap C = (A \cap C) \cup (B \cap C)
$$

De Morgan's Laws:

$$
A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)
$$

$$
A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)
$$

1.14 Definition. The *Cartesian product* of sets *A*, *B* is the set consisting of all ordered pairs of elements of *A* and *B*:

$$
A \times B = \{(a, b) \mid a \in A, b \in B\}
$$

1.16 Notation. Given a set A by Aⁿ we will denote the n-fold Cartesian product of A:

$$
A^n = \underbrace{A \times A \times \cdots \times A}_{n \text{ times}}
$$

1.18 Infinite products.

1.27 Definition. Let *A*, *B* be sets

1) A function $f: A \rightarrow B$ is $1-1$ if $f(x) = f(x')$ only if $x = x'$.

2) A function $f: A \rightarrow B$ is *onto* if for every $y \in B$ there is $x \in A$ such that $f(x) = y$

3) A function $f: A \rightarrow B$ is a *bijection* if f is both 1-1 and onto.

1.29 Definition. Sets *A*, *B have the same cardinality* if there exists a bijection $f: A \rightarrow B$. In such case we write $|A| = |B|$.

1.30 Definition. A set *A* is *finite* if either $A = \emptyset$ or *A* has the same cardinality as the set $\{1, \ldots, n\}$ for some $n \geq 1$.

1.31 Definition. A set A is *infinitely countable* if it is has the same cardinality as the set \mathbb{Z}^+ = *{*1*,* 2*,* 3*, . . . }*

1.32 Definition. A set *A* is *countable* if it is either finite or infinitely countable.

1.33 Example. The set of natural numbers $\mathbb{N} = \{0, 1, 2, \dots\}$ is countable since we have a bijection $f: \mathbb{Z}^+ \to \mathbb{N}$ given by $f(k) = k - 1$.

1.34 Example. The set of integers Z = *{. . . , −*2*, −*1*,* 0*,* 1*,* 2*, . . . }* is countable since we have a bijection *f* : $\mathbb{Z}^+ \to \mathbb{Z}$ given by $f(k) = \begin{cases}$

$$
f(k) = \begin{cases} k/2 & \text{if } k \text{ is even} \\ (1-k)/2 & \text{if } k \text{ is odd} \end{cases}
$$

In other words:

$$
f(1) = 0
$$
, $f(2) = 1$, $f(3) = -1$, $f(4) = 2$, $f(5) = -2$, $f(6) = 3$, ...

1.35 Example. The set of rational numbers $\mathbb Q$ is countable. A bijection $f: \mathbb Z^+ \to \mathbb Q$ can be constructed as follows:

0/1	1/1	-1/1	2/1	-2/1	3/1	-3/1	...	$0/1 = f(1)$	
0/2	1/2	-1/2	2/2	-2/2	3/2	-3/2	...	$0/2 = 0/1 = f(1)$	
0/3	1/3	-1/3	2/3	-2/3	3/3	-3/3	...	$-1/1 = f(2)$	
0/4	1/4	-1/4	2/4	-2/4	3/4	-3/4	...	$0/3 = 0/1 = f(1)$	
0/5	1/5	-1/5	2/5	-2/5	3/5	-3/5	...	$0/4 = 0/1 = f(1)$	
0/6	1/6	-1/6	2/6	-2/6	3/6	-3/6	...	$-1/2 = f(6)$	
0/7	1/7	-1/7	2/7	-2/7	3/7	-3/7
...				

1.36 Theorem. *1)* If *A is a countable set and* $B \subseteq A$ *then B is countable.*

2) If {A₁, A₂,...} is a collection of countably many countable sets then the set $\bigcup_{i=1}^{\infty} A_i$ is countable. *3) If* $\{A_1, A_2, \ldots, A_n\}$ is a collection of finitely many countable sets then the set $A_1 \times \cdots \times A_n$ is *countable.*

1.37 Example. The set of all real numbers in the interval (0, 1) is not countable.

 $f(1) = 0.31415...$ $f(2) = 0.12345...$ $f(3) = 0.75149...$ $f(4) = 0.00032...$ $f(5) = 0.11111...$ *.*

1.38 Example. The function f : (0, 1) $\rightarrow \mathbb{R}$ given by $f(x) = \tan\left(\pi x - \frac{\pi}{2}\right)$ 2 $\overline{ }$ is a bijection. It follows that $|\mathbb{R}| = |(0, 1)|$, and so the set $\mathbb R$ is not countable.

Infima and Suprema.

1.40 Definition. Let $A \subseteq \mathbb{R}$. The set A is *bounded below* if there exists a number *b* such that $b \leq x$ for all $x \in A$. The set *A* is *bounded above* if there exists a number *c* such that $x \le c$ for all $x \in A$. The set *A* is *bounded* if it is both bounded below and bounded above.

1.41 Definition. Let *A ⊆* R. If the set *A* is bounded below then the *greatest lower bound* of *A* (or *infimum* of *A*) is a number $a_0 \in \mathbb{R}$ such that:

- 1) $a_0 \leq x$ for all $x \in A$
- 2) if *b* \leq *x* for all $x \in A$ then $b \leq a_0$

We write: $a_0 = \inf A$.

If the set *A* is not bounded below then we set inf *A* := *−∞*.

1.43 Theorem. *For any non-empty bounded below subset A ⊆* R *the number* inf *A exists.*

1.44 Definition. Let *A ⊆* R. If the set *A* is bounded above then the *least upper bound* of *A* (or *supremum* of *A*) is a number $a_0 \in \mathbb{R}$ such that:

- 1) $x \le a_0$ for all $x \in A$
- 2) if $x \leq b$ for all $x \in A$ then $a_0 \leq b$

We write: $a_0 = \sup A$.

If the set *A* is not bounded above then we set sup $A := +\infty$.

1.46 Theorem. For any non-empty bounded above subset $A \subseteq \mathbb{R}$ the number sup *A* exists.