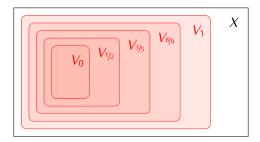
10 Urysohn Lemma

10.1 Urysohn Lemma. Let X be a normal space and let A, $B \subseteq X$ be closed sets such that $A \cap B = \emptyset$. There exists a continuous function $f: X \to [0, 1]$ such that $A \subseteq f^{-1}(\{0\})$ and $B \subseteq f^{-1}(\{1\})$.

10.2 Lemma. Let X be a topological space. Assume that for each $r \in [0, 1] \cap \mathbb{Q}$ we are given an open set $V_r \subseteq X$ such that $\overline{V}_r \subseteq V_{r'}$ if r < r'. There exists a continuous function $f: X \to [0, 1]$ such that if $x \in V_0$ then f(x) = 0 and if $x \notin V_1$ then f(x) = 1.

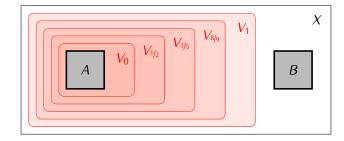


10.3 Lemma. Let X be a normal space, let $A \subseteq X$ be a closed set and let $U \subseteq X$ be an open set such that $A \subseteq U$. There exists an open set V such that $A \subseteq V$ and $\overline{V} \subseteq U$.

Proof. Exercise.

Proof of Urysohn Lemma 10.1. We will show that for each $r \in [0, 1] \cap \mathbb{Q}$ there exists an open set $V_r \subseteq X$ such that

- 1) $A \subseteq V_0$
- 2) $B \subseteq X \smallsetminus V_1$
- 3) if r < r' then $\overline{V}_r \subseteq V_{r'}$.



1	Г		٦	

10.4 Definition. A topological space X satisfies the axiom $T_{31/2}$ if X satisfies T_1 and if for each point $x \in X$ and each closed set $A \subseteq X$ such that $x \notin A$ there exists a continuous function $f: X \to [0, 1]$ such that f(x) = 1 and $f|_A = 0$.

A space that satisfies the axiom $T_{31/2}$ is called a *completely regular space* or a *Tychonoff space*.

