11 Tietze Extension Theorem

11.1 Generalized Urysohn Lemma. Let X be a normal space and let $A, B \subseteq X$ be closed sets such that $A \cap B = \emptyset$. For any $a, b \in \mathbb{R}$, a < b there exists a continuous function $f : X \to [a, b]$ such that $A \subseteq f^{-1}(\{a\})$ and $B \subseteq f^{-1}(\{b\})$.

11.2 Tietze Extension Theorem (v.1). Let X be a normal space, let $A \subseteq X$ be a closed subspace, and let $f: A \rightarrow [a, b]$ be a continuous function for some $[a, b] \subseteq \mathbb{R}$. There exits a continuous function $\overline{f}: X \rightarrow [a, b]$ such that $\overline{f}|_A = f$.

11.3 Definition. Let X, Y be a topological spaces and let $\{f_n : X \to Y\}$ be a sequence of functions. We say that the sequence $\{f_n\}$ *converges pointwise* to a function $f : X \to Y$ if for each $x \in X$ the sequence $\{f_n(x)\} \subseteq Y$ converges to the point f(x).

11.5 Definition. Let X be a topological space, let (Y, ϱ) be a metric space, and let $\{f_n : X \to Y\}$ be a sequence of functions. We say that the sequence $\{f_n\}$ converges uniformly to a function $f : X \to Y$ if for every $\varepsilon > 0$ there exists N > 0 such that

$$\varrho(f(x), f_n(x)) < \varepsilon$$

for all $x \in X$ and for all n > N.

11.6 Note. If a sequence $\{f_n\}$ converges uniformly to f then it also converges pointwise to f, but the converse is not true in general.

11.7 Proposition. Let X be a topological space and let (Y, ϱ) be a metric space. Assume that $\{f_n : X \to Y\}$ is a sequence of functions that converges uniformly to $f : X \to Y$. If all functions f_n are continuous then f is also a continuous function.

11.8 Lemma. Let X be a normal space, $A \subseteq X$ be a closed set, and let $f : A \to \mathbb{R}$ be a continuous function such that for some C > 0 we have $|f(x)| \leq C$ for all $x \in A$. There exists a continuous function $g: X \to \mathbb{R}$ such that $|g(x)| \leq \frac{1}{3}C$ for all $x \in X$ and $|f(x) - g(x)| \leq \frac{2}{3}C$ for all $x \in A$.

Proof of Theorem 11.2.

11.9 Tietze Extension Theorem (v.2). Let X be a normal space, let $A \subseteq X$ be a closed subspace, and let $f: A \to \mathbb{R}$ be a continuous function. There exits a continuous function $\overline{f}: X \to \mathbb{R}$ such that $\overline{f}|_A = f$.

11.10 Theorem. Let X be a space satisfying T_1 . The following conditions are equivalent:

- 1) X is a normal space.
- 2) For any closed sets $A, B \subseteq X$ such that $A \cap B = \emptyset$ there is a continuous function $f: X \to [0, 1]$ such that such that $A \subseteq f^{-1}(\{0\})$ and $B \subseteq f^{-1}(\{1\})$.
- 3) If $A \subseteq X$ is a closed set then any continuous function $f : A \to \mathbb{R}$ can be extended to a continuous function $\overline{f} : X \to \mathbb{R}$.