12 | Urysohn Metrization Theorem

12.1 Urysohn Metrization Theorem. *Every second countable normal space is metrizable.*

12.2 Definition. A continuous function $i: X \to Y$ is an *embedding* if its restriction $i: X \to i(X)$ is a homeomorphism (where $i(X)$ has the topology of a subspace of Y).

12.5 Lemma. *If* $j: X \to Y$ *is an embedding and* Y *is a metrizable space then* X *is also metrizable.*

 12.6 $\bm{\mathrm{Definition.}}$ Let $\{X_i\}_{i\in I}$ be a family of topological spaces. The *product topology* on $\prod_{i\in I}X_i$ is the topology generated by the basis

> $\mathcal{B} =$ \overline{a} $\{u_i \in I \setminus U_i \mid U_i \text{ is open in } X_i \text{ and } U_i \neq X_i \text{ for finitely many indices } i \text{ only}\}$

12.8 Proposition. *Let {Xi}i∈I be a family of topological spaces and for j ∈ I let*

$$
p_j \colon \prod_{i \in I} X_i \to X_j
$$

be the projection onto the j-th factor: $p_j((x_i)_{i\in I}) = x_j$ *. Then:*

- *1) for any j* ∈ *l the function* p_j *is continuous.* $\frac{1}{\Box}$
- *2) A function f* : *Y → i∈I Xⁱ is continuous if and only if the composition pjf* : *Y → X^j is continuous for all* $j \in I$

Proof. Exercise.

 \Box

12.10 Proposition. If X_1, \ldots, X_n are metrizable spaces then $X_1 \times \cdots \times X_n$ is also a metrizable space.

12.11 Proposition. If $\{X_i\}_{i=1}^\infty$ is an infinite countable family of metrizable spaces then $\prod_{i=1}^\infty X_i$ is also *a metrizable space.*

12.12 Example. The *Hilbert cube* is the topological space [0*,* 1]*ℵ*⁰ obtained as the infinite countable product of the closed interval [0*,* 1] :

$$
[0,1]^{\aleph_0} = \prod_{i=1}^{\infty} [0,1]
$$

Elements of $[0, 1]^{k_0}$ are infinite sequences $(t_i) = (t_1, t_2, \ldots)$ where $t_i \in [0, 1]$ for $i = 1, 2, \ldots$ The Hilbert cube is a metric space with a metric *ρ* given by

$$
\varrho((t_i),(s_i))=\sum_{i=1}^{\infty}\frac{1}{2^i}|t_i-s_i|
$$

12.13 Definition. Let *X* be a topological space and let *{fi}i∈I* be a family of continuous functions *fi* : *X →* [0*,* 1]. We say that the family *{fi}i∈I separates points from closed sets* if for any point *x*⁰ *∈ X* and any closed set $A ⊆ X$ such that $x_0 ∉ A$ there is a function $f_j ∈ \{f_i\}_{i ∈ I}$ such that $f_j(x_0) > 0$ and $f_j|_A = 0.$

12.14 Embedding Lemma. *Let X be a T*1*-space. If {fⁱ* : *X →* [0*,* 1]*}i∈I is a family that separates points from closed sets then the map* Y

$$
f_\infty\colon X\to \prod_{i\in I}\,[0,1]
$$

given by $f_{\infty}(x) = (f_i(x))_{i \in I}$ *is an embedding.*

Proof of Theorem 12.1.

12.16 Proposition. *Every second countable regular space is normal.*

Proof. Exercise.

12.17 Urysohn Metrization Theorem (v.2). *Every second countable regular space is metrizable.*

 \Box

12.18 Definition. Let *X* be a topological space. A collection $\mathcal{U} = \{U_i\}_{i \in I}$ of open sets in *X* is *locally finite* if each point $x \in X$ has an open neighborhood V_x such that $V_x \cap U_i \neq \emptyset$ for finitely many $i \in I$ only.

A collection $\mathfrak U$ is *countably locally finite* if it can be decomposed into a countable union $\mathfrak U = \bigcup_{n=1}^\infty \mathfrak U_n$ where each collection U*ⁿ* is locally finite.

12.19 Nagata-Smirnov Metrization Theorem. *Let X be a topological space. The following conditions are equivalent:*

- *1) X is metrizable.*
- *2) X is regular and it has a basis which is countably locally finite.*