12 Urysohn Metrization Theorem

12.1 Urysohn Metrization Theorem. Every second countable normal space is metrizable.

12.2 Definition. A continuous function $i: X \to Y$ is an *embedding* if its restriction $i: X \to i(X)$ is a homeomorphism (where i(X) has the topology of a subspace of Y).

12.5 Lemma. If $j: X \to Y$ is an embedding and Y is a metrizable space then X is also metrizable.

12.6 Definition. Let $\{X_i\}_{i \in I}$ be a family of topological spaces. The *product topology* on $\prod_{i \in I} X_i$ is the topology generated by the basis

 $\mathcal{B} = \left\{ \prod_{i \in I} U_i \mid U_i \text{ is open in } X_i \text{ and } U_i \neq X_i \text{ for finitely many indices } i \text{ only} \right\}$

12.8 Proposition. Let $\{X_i\}_{i \in I}$ be a family of topological spaces and for $j \in I$ let

$$p_j \colon \prod_{i \in I} X_i \to X_j$$

be the projection onto the *j*-th factor: $p_j((x_i)_{i \in I}) = x_j$. Then:

- 1) for any $j \in I$ the function p_j is continuous.
- 2) A function $f: Y \to \prod_{i \in I} X_i$ is continuous if and only if the composition $p_j f: Y \to X_j$ is continuous for all $j \in I$

Proof. Exercise.

12.10 Proposition. If X_1, \ldots, X_n are metrizable spaces then $X_1 \times \cdots \times X_n$ is also a metrizable space.

12.11 Proposition. If $\{X_i\}_{i=1}^{\infty}$ is an infinite countable family of metrizable spaces then $\prod_{i=1}^{\infty} X_i$ is also a metrizable space.

12.12 Example. The *Hilbert cube* is the topological space $[0, 1]^{\aleph_0}$ obtained as the infinite countable product of the closed interval [0, 1]:

$$[0,1]^{\aleph_0} = \prod_{i=1}^{\infty} [0,1]$$

Elements of $[0, 1]^{\aleph_0}$ are infinite sequences $(t_i) = (t_1, t_2, ...)$ where $t_i \in [0, 1]$ for i = 1, 2, ... The Hilbert cube is a metric space with a metric ϱ given by

$$\varrho((t_i), (s_i)) = \sum_{i=1}^{\infty} \frac{1}{2^i} |t_i - s_i|$$

12.13 Definition. Let X be a topological space and let $\{f_i\}_{i \in I}$ be a family of continuous functions $f_i: X \to [0, 1]$. We say that the family $\{f_i\}_{i \in I}$ separates points from closed sets if for any point $x_0 \in X$ and any closed set $A \subseteq X$ such that $x_0 \notin A$ there is a function $f_j \in \{f_i\}_{i \in I}$ such that $f_j(x_0) > 0$ and $f_j|_A = 0$.

12.14 Embedding Lemma. Let X be a T_1 -space. If $\{f_i : X \to [0, 1]\}_{i \in I}$ is a family that separates points from closed sets then the map

$$f_{\infty} \colon X \to \prod_{i \in I} [0, 1]$$

given by $f_{\infty}(x) = (f_i(x))_{i \in I}$ is an embedding.

Proof of Theorem 12.1.

12.16 Proposition. *Every second countable regular space is normal.*

Proof. Exercise.

12.17 Urysohn Metrization Theorem (v.2). Every second countable regular space is metrizable.

12.18 Definition. Let X be a topological space. A collection $\mathcal{U} = \{U_i\}_{i \in I}$ of open sets in X is *locally finite* if each point $x \in X$ has an open neighborhood V_x such that $V_x \cap U_i \neq \emptyset$ for finitely many $i \in I$ only.

A collection \mathcal{U} is *countably locally finite* if it can be decomposed into a countable union $\mathcal{U} = \bigcup_{n=1}^{\infty} \mathcal{U}_n$ where each collection \mathcal{U}_n is locally finite.

12.19 Nagata-Smirnov Metrization Theorem. Let *X* be a topological space. The following conditions are equivalent:

- 1) X is metrizable.
- 2) X is regular and it has a basis which is countably locally finite.