13 | Metrization of Manifolds

13.1 Definition. A *topological manifold of dimension* n is a topological space M which is a Hausdorff, second countable, and such that every point of M has an open neighborhood homeomorphic to an open subset of \mathbb{R}^n (we say that M is *locally homeomorphic* to \mathbb{R}^n).

13.3 Lemma. If M is an n-dimensional manifold then:

- 1) for any point $x \in M$ there exists a coordinate chart $\varphi: U \to V$ such that $x \in U$, V is an open ball V = B(y, r), and $\varphi(x) = y$;
- 2) for any point $x \in M$ there exists a coordinate chart $\psi: U \to V$ such that $x \in U$, $V = \mathbb{R}^n$, and $\psi(x) = 0$.

Proof. Exercise.

13.4 Example. A space	M is a	man if old	of	dimension	0 if	and	only	if.	Μ	is a	countable	(finite	or
infinite) discrete space.													

- **13.5 Example.** If U is an open set in \mathbb{R}^n then U is an n-dimensional manifold. The identity map $\mathrm{id}\colon U\to U$ is then a coordinate chart defined on the whole manifold U. In particular \mathbb{R}^n is an n-dimensional manifold.
- **13.6 Example.** The n-dimensional sphere

$$S^n := \{(x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \mid x_1^2 + \dots + x_{n+1}^2 = 1\}$$

is an *n*-dimensional manifold.

13.7 Proposition. If M is an m-dimensional manifold and N is an n-dimensional manifold then $M \times N$ is an m + n-dimensional manifold.

Proof. Exercise.

13.9 Note. There exist topological spaces that are locally homeomorphic to \mathbb{R}^n , but do not satisfy the other conditions of the definition of a manifold (13.1).
13.10 Invariance of Dimension Theorem. If M is a non-empty topological space such that M is a manifold of dimension m and M is also a manifold of dimension n then $m=n$.

13.11 Definition. A topological n-dimensional manifold with boundary is a topological space M which is a Hausdorff, second countable, and such that every point of M has an open neighborhood homeomorphic to an open subset of \mathbb{H}^n .

13.13 Theorem. Let M be an n-dimensional manifold with boundary, let $x_0 \in M$ and let $\varphi \colon U \to V$ be a local coordinate chart such that $x_0 \in U$. If $\varphi(x_0) \in \partial \mathbb{H}^n$ then for any other local coordinate chart $\psi \colon U' \to V'$ such that $x_0 \in U'$ we have $\psi(x_0) \in \partial \mathbb{H}^n$.

13.14 Definition. Let M be a manifold with boundary. The subspace of M consisting of all boundary points of M is called *the boundary of* M and it is denoted by ∂M .

- 13.15 Example. The space \mathbb{H}^n is trivially an n-dimensional manifold with boundary.
- **13.16 Example.** For any n the closed n-dimensional ball

$$\overline{B}^n = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1^2 + \dots + x_n^2 \le 1\}$$

is an *n*-dimensional manifold with boundary (exercise). In this case we have $\partial \overline{B}^n = S^{n-1}$.

13.17 Example. If M is a manifold (without boundary) then we can consider it as a manifold with boundary. where $\partial M = \emptyset$.

13.18 Example. If M is an m-dimensional manifold with boundary and N is an n-dimensional manifold without boundary then $M \times N$ is an (m + n)-dimensional manifold with boundary (exercise).

13.20 Theorem. Every topological manifold (with or without boundary) is metrizable.

13.21 Lemma. Let M be an n-dimensional topological manifold, and let $\varphi \colon U \to V$ be a coordinate chart on M. If $\overline{B}(x,r)$ is a closed ball in \mathbb{R}^n such that $\overline{B}(x,r) \subseteq V$ then the set $\varphi^{-1}(\overline{B}(x,r))$ is closed in M.

