13 | Metrization of Manifolds

13.1 Definition. A *topological manifold of dimension n* is a topological space *M* which is a Hausdorff, second countable, and such that every point of *M* has an open neighborhood homeomorphic to an open subset of \mathbb{R}^n (we say that M is *locally homeomorphic* to \mathbb{R}^n untable, and such that every point of M has an open \mathbb{R}^n (we say that M is *locally homeomorphic* to \mathbb{R}^n).

13.3 Lemma. *If M is an n-dimensional manifold then:*

- *1) for any point* $x \in M$ *there exists a coordinate chart* $\varphi: U \to V$ *such that* $x \in U$, V *is an open ball* $V = B(y, r)$ *, and* $\varphi(x) = y$ *;*
- *2*) for any point $x \in M$ there exists a coordinate chart $\psi: U \to V$ such that $x \in U$, $V = \mathbb{R}^n$, and $\psi(x) = 0.$

 \Box

Proof. Exercise.

13.4 Example. A space *M* is a manifold of dimension 0 if and only if *M* is a countable (finite or infinite) discrete space.

13.5 Example. If U is an open set in \mathbb{R}^n then U is an *n*-dimensional manifold. The identity map id: $U \to \dot{U}$ is then a coordinate chart defined on the whole manifold U . In particular \mathbb{R}^n is an *n*-dimensional manifold.

13.6 Example. The *n*-dimensional sphere

$$
S^n := \{(x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} \mid x_1^2 + \cdots + x_{n+1}^2 = 1\}
$$

is an *n*-dimensional manifold.

13.7 Proposition. *If M is an m-dimensional manifold and N is an n-dimensional manifold then M ×N is an m* + *n-dimensional manifold.*

Proof. Exercise.

 \Box

13.9 Note. There exist topological spaces that are locally homeomorphic to \mathbb{R}^n , but do not satisfy the the other conditions of the definition of a manifold (13.1).

13.10 Invariance of Dimension Theorem. *If M is a non-empty topological space such that M is a manifold of dimension m and M is also a manifold of dimension n then m* = *n.*

13.11 Definition. A *topological n-dimensional manifold with boundary* is a topological space *M* which is a Hausdorff, second countable, and such that every point of *M* has an open neighborhood which is a Hausdorff, second countable, and
homeomorphic to an open subset of \mathbb{H}^n .

13.13 Theorem. Let *M* be an *n*-dimensional manifold with boundary, let $x_0 \in M$ and let $\varphi: U \to V$ *be a local coordinate chart such that* $x_0 \in U$. If $\varphi(x_0) \in \partial \mathbb{H}^n$ then for any other local coordinate chart $\psi: U' \to V'$ such that $x_0 \in U'$ we have $\psi(x_0) \in \partial \mathbb{H}^n$.

13.14 Definition. Let *M* be a manifold with boundary. The subspace of *M* consisting of all boundary points of *M* is called *the boundary of M* and it is denoted by *∂M*.

13.15 Example. The space \mathbb{H}^n is trivially an *n*-dimensional manifold with boundary.

13.16 Example. For any *n* the closed *n*-dimensional ball

$$
\overline{B}^n = \{(x_1,\ldots,x_n) \in \mathbb{R}^n \mid x_1^2 + \cdots + x_n^2 \leq 1\}
$$

is an *n-*dimensional manifold with boundary (exercise). In this case we have $\partial \overline{B}^n = S^{n-1}.$

13.17 Example. If *M* is a manifold (without boundary) then we can consider it as a manifold with boundary. where *∂M* = ∅.

13.18 Example. If *M* is an *m*-dimensional manifold with boundary and *N* is an *n*-dimensional manifold without boundary then $M \times N$ is an $(m + n)$ -dimensional manifold with boundary (exercise).

13.20 Theorem. *Every topological manifold (with or without boundary) is metrizable.*

13.21 Lemma. *Let M be an n-dimensional topological manifold, and let φ*: *U → V be a coordinate* chart on M. If $\overline B(x,r)$ is a closed ball in \R^n such that $\overline B(x,r)\subseteq V$ then the set $\varphi^{-1}(\overline B(x,r))$ is closed *in M.*

