14 Compact Spaces

14.1 Definition. Let X be a topological space. A *cover* of X is a collection $\mathcal{Y} = \{Y_i\}_{i \in I}$ of subsets of X such that $\bigcup_{i \in I} Y_i = X$.

If the sets Y_i are open in X for all $i \in I$ then \mathcal{Y} is an *open cover* of X. If \mathcal{Y} consists of finitely many sets then \mathcal{Y} is a *finite cover* of X.

14.2 Definition. Let $\mathcal{Y} = \{Y_i\}_{i \in I}$ be a cover of X. A *subcover* of \mathcal{Y} is cover \mathcal{Y}' of X such that every element of \mathcal{Y}' is in \mathcal{Y} .

14.4 Definition. A space *X* is *compact* if every open cover of *X* contains a finite subcover.

14.5 Example. A discrete topological space X is compact if and only if X consists of finitely many points.

14.6 Example. Let *X* be a subspace of \mathbb{R} given by

$$X = \{0\} \cup \{ \frac{1}{n} \mid n = 1, 2, \dots \}$$

The space X is compact.

14.7 Example. The real line ${\mathbb R}$ is not compact

14.8 Proposition. For any a < b the closed interval $[a, b] \subseteq \mathbb{R}$ is compact.

14.9 Proposition. Let $f: X \to Y$ be a continuous function. If X is compact and f is onto then Y is compact.

Proof. Exercise.

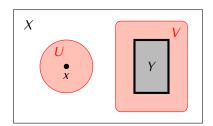
14.10 Corollary. Let $f: X \to Y$ be a continuous function. If $A \subseteq X$ is compact then $f(A) \subseteq Y$ is compact.

14.11 Corollary. Let X, Y be topological spaces. If X is compact and $Y \cong X$ then Y is compact.

14.13 Proposition. Let X be a compact space. If Y is a closed subspace of X then Y is compact. *Proof.* Exercise.

14.14 Proposition. Let X be a Hausdorff space and let $Y \subseteq X$. If Y is compact then it is closed in X.

14.15 Lemma. Let X be a Hausdorff space, let $Y \subseteq X$ be a compact subspace, and let $x \in X \setminus Y$. There exists open sets $U, V \subseteq X$ such that $x \in U, Y \subseteq V$ and $U \cap V = \emptyset$.



14.16 Corollary. Let X be a compact Hausdorff space. A subspace $Y \subseteq X$ is compact if and only if Y is closed in X.

14.17 Proposition. Let $f: X \to Y$ be a continuous function, where X is a compact space and Y is a Hausdorff space. For any closed set $A \subseteq X$ the set f(A) is closed in Y.

14.18 Proposition. Let $f: X \to Y$ be a continuous bijection. If X is a compact space and Y is a Hausdorff space then f is a homeomorphism.

14.19 Theorem. If X is a compact Hausdorff space then X is normal.