2 | Metric Spaces

Recall that a function $f: \mathbb{R} \to \mathbb{R}$ is *continuous at a point* $x_0 \in \mathbb{R}$ if for each $\varepsilon > 0$ there exists $\delta > 0$ such that if $|x_0 - x| < \delta$ then $|f(x_0) - f(x)| < \varepsilon$:

A function is *continuous* if it is continuous at every point $x_0 \in \mathbb{R}$.

Continuity of functions of several variables $f: \mathbb{R}^n \to \mathbb{R}^m$ is defined in a similar way. Recall that $\mathbb{R}^n:=\{(x_1,\ldots,x_n)\mid x_i\in\mathbb{R}\}$. If $x=(x_1,\ldots,x_n)$ and $y=(y_1,\ldots,y_n)$ are two points in \mathbb{R}^n then the distance between *x* and *y* is given by

$$
d(x, y) = \sqrt{(x_1 - y_1)^2 + \cdots + (x_n - y_n)^2}
$$

The number *d*(*x, y*) is the length of the straight line segment joining the points *x* and *y*:

2.1 Definition. A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is *continuous at* $x_0 \in \mathbb{R}^n$ if for each $\varepsilon > 0$ there exists $\delta > 0$ such that if $d(x_0, x) < \delta$ then $d(f(x_0), f(x)) < \varepsilon$.

2.2 Definition. Let $x_0 \in \mathbb{R}^n$ and let $r > 0$. An *open ball* with radius r and with center at x_0 is the set

B(*x*₀*, r*) = { $x \in \mathbb{R}^n \mid d(x_0, x) < r$ }

*r x*0 R *n*

Using this terminology we can say that a function $f: \mathbb{R}^n \to \mathbb{R}^m$ is continuous at x_0 if for each $\varepsilon > 0$ there is a $\delta > 0$ such $f(B(x_0, \delta)) \subseteq B(f(x_0), \varepsilon)$:

Here is one more way of rephrasing the definition of continuity: $f\colon\mathbb{R}^n\to\mathbb{R}^m$ is continuous at x_0 if for each *ε >* 0 there exists *δ >* 0 such that *B*(*x*0*, δ*) *⊆ f −*1 (*B*(*f*(*x*0)*, ε*)):

2.3 Definition. A *metric space* is a pair (*X, ρ*) where *X* is a set and *ρ* is a function

$$
\varrho\colon X\times X\to\mathbb{R}
$$

that satisfies the following conditions:

- 1) $\rho(x, y) \ge 0$ and $\rho(x, y) = 0$ if and only if $x = y$;
- 2) $\rho(x, y) = \rho(y, x)$;
- 3) for any *x*, *y*, *z* \in *X* we have ϱ (*x*, *z*) \leq ϱ (*x*, *y*) + ϱ (*y*, *z*).

The function *ρ* is called a *metric* on the set *X*. For *x, y ∈ X* the number *ρ*(*x, y*) is called the *distance* between *x* and *y*.

2.4 Definition. Let (X, ϱ) and (Y, μ) be metric spaces. A function $f: X \to Y$ is *continuous at* $x_0 \in X$ if for each $\varepsilon > 0$ there exists $\delta > 0$ such that if $\rho(x_0, x) < \delta$ then $\mu(f(x_0), f(x)) < \epsilon$.

A function $f: X \to Y$ is *continuous* if it is continuous at every point $x_0 \in X$.

2.5 Definition. Let (X, ϱ) be a metric space. For $x_0 \in X$ and let $r > 0$ the *open ball* with radius *r* and with center at *x*⁰ is the set

$$
B_{\varrho}(x_0,r)=\{x\in X\mid \varrho(x_0,x)< r\}
$$

Notice that a function $f\colon X\to Y$ between metric spaces (X,ϱ) and (Y,μ) is continuous at $x_0\in X$ if and only if for each *ε >* 0 there exists *δ >* 0 such that *Bρ*(*x*0*, δ*) *⊆ f −*1 (*Bµ*(*f*(*x*0)*, ε*)).

2.6 Example. Let $X = \mathbb{R}^n$. For $x = (x_1, ..., x_n)$, $y = (y_1, ..., y_n)$ define:

$$
d(x, y) = \sqrt{(x_1 - y_1)^2 + \cdots + (x_n - y_n)^2}
$$

The metric d is called the *Euclidean metric* on \mathbb{R}^n .

2.7 Example. Let $X = \mathbb{R}^n$. For $x = (x_1, ..., x_n)$, $y = (y_1, ..., y_n)$ define:

$$
Q_{ort}(x, y) = |x_1 - y_1| + \cdots + |x_n - y_n|
$$

The metric *ρort* is called the *orthogonal metric* on R *n* .

2.8 Example. Let $X = \mathbb{R}^n$. For $x = (x_1, ..., x_n)$, $y = (y_1, ..., y_n)$ define:

$$
\varrho_{max}(x, y) = \max\{|x_1 - y_1|, \ldots, |x_n - y_n|\}
$$

The metric ϱ_{max} is called the *maximum metric* on \mathbb{R}^n .

2.9 Example. Let $X = \mathbb{R}^n$. For $x = (x_1, \ldots, x_n)$, $y = (y_1, \ldots, y_n)$ define $\varrho_h(x, y)$ as follows. If $x = y$ then $\varrho_h(x, y) = 0$. If $x \neq y$ then

$$
\varrho_h(x, y) = \sqrt{x_1^2 + \dots + x_n^2} + \sqrt{y_1^2 + \dots + y_n^2}
$$

The metric ϱ_h is called the *hub metric* on \mathbb{R}^n .

2.10 Example. Let *X* be any set. Define a metric *ρdisc* on *X* by

$$
Q_{disc}(x, y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}
$$

The metric *ρdisc* is called the *discrete metric* on *X*.

2.11 Example. If (X, ϱ) is a metric space and $A \subseteq X$ then A is a metric space with the metric induced from *X*.