| Open Sets

3.1 Definition. Let ϱ_1 and ϱ_2 be two metrics on the same set *X*. We say that the metrics ϱ_1 and ϱ_2 are *equivalent* if for every $x \in X$ and for every $r > 0$ there exist $s_1, s_2 > 0$ such that $B_{\varrho_1}(x,s_1) ⊆ B_{\varrho_2}(x,r)$ and $B_{\varrho_2}(x, s_2) \subseteq B_{\varrho_1}(x, r)$.

3.2 Proposition. *Let ρ*1*, ρ*² *be equivalent metrics on a set X, and let µ*1*, µ*² *be equivalent metrics on a* set *Y*. A function $f: X \to Y$ is continuous with respect to the metrics ϱ_1 and μ_1 if and only if it is *continuous with respect to the metrics ρ*² *and µ*2*.*

3.3 Example. The Euclidean metric *d*, the orthogonal metric *ρort* and the maximum metric *ρmax* are equivalent metrics on R *n* (exercise).

3.4 $\sf{Example.}$ The following metrics on \mathbb{R}^2 are not equivalent to one another: the Euclidean metric d , the hub metric *ρh*, and the discrete metric *ρdisc* (exercise).

3.5 Definition. Let (*X, ρ*) be a metric space. A subset *U ⊆ X* is an *open set* if *U* is a union of (perhaps S infinitely many) open balls in $X: U = \bigcup_{i \in I} B(x_i, r_i)$.

3.6 Proposition. *Let* (*X, ρ*) *be a metric space and let U ⊆ X. The following conditions are equivalent:*

- *1) The set U is open.*
- *2) For every* $x \in U$ *there exists* $r_x > 0$ *such that* $B(x, r_x) ⊆ U$.

Proof. Exercise.

3.7 Proposition. *Let X be a set and let ρ*1*, ρ*² *be two metrics on X. The following conditions are equivalent:*

- *1) The metrics ρ*¹ *and ρ*² *are equivalent.*
- *2) A* set $U \subseteq X$ *is open with respect to the metric* ϱ_1 *if and only if it is open with respect to the metric ρ*2*.*

3.8 Proposition. *Let* (*X, ρ*) *be a metric space.*

- *1) The sets* X *and* \emptyset *are open sets.*
- *2)* If U_i is an open set for $i \in I$ then the set $\bigcup_{i \in I} U_i$ is open.
- *3) If* U_1 , U_2 are open sets then the set $U_1 \cap U_2$ is open.

Proof. Exercise.

3.10 Proposition. *Let* (*X, ρ*)*,* (*Y , µ*) *be metric spaces and let f* : *X → Y be a function. The following conditions are equivalent:*

- *1) The function f is continuous.*
- *2)* For every open set $U \subseteq Y$ the set $f^{-1}(U)$ is open in X .

3.11 Lemma. *Let* (*X, ρ*)*,* (*Y , µ*) *be metric spaces and let f* : *X → Y be a continuous function. If* $B := B(y_0, r)$ *is an open ball in Y then the set f*⁻¹(*B*) *is open in X*.

Proof. Exercise.

3.12 Definition. Let *X* be a set. A *topology* on *X* is a collection T of subsets of *X* satisfying the following conditions:

- 1) $X, \varnothing \in \mathfrak{T}$;
- 2) If $U_i \in \mathcal{T}$ for $i \in I$ then $\bigcup_{i \in I} U_i \in \mathcal{T}$;
- 3) If $U_1, U_2 \in \mathcal{T}$ then $U_1 \cap U_2 \in \mathcal{T}$.

Elements of T are called *open sets*.

A *topological space* is a pair (*X,* T) where *X* is a set and T is a topology on *X*.

3.13 Definition. Let (X, \mathcal{T}_X) , (Y, \mathcal{T}_Y) be topological spaces. A function $f: X \rightarrow Y$ is *continuous* if for every $U \in \mathfrak{T}_Y$ we have $f^{-1}(U) \in \mathfrak{T}_X$.

3.14 Example. If (*X, ρ*) is a metric space then *X* is a topological space with the topology

 $\mathcal{T} = \{U \subseteq X \mid U \text{ is a union of open balls}\}\$

We say that the topology T is *induced by the metric ρ*.

3.16 Example. Let *X* be an arbitrary set and let

 $\mathcal{T} = \{$ all subsets of $X\}$

The topology $\mathcal T$ is called the *discrete topology* on X . If X is equipped with this topology then we say that it is a *discrete topological space*.

3.17 Example. Let *X* be an arbitrary set and let

$$
\mathfrak{T} = \{X, \varnothing\}
$$

The topology T is called the *antidiscrete topology* on *X*.

3.18 Example. Let $X = \mathbb{R}$ and let

 $\mathcal{T} = \{U \subseteq \mathbb{R} \mid U = \varnothing \text{ or } U = (\mathbb{R} \smallsetminus S) \text{ for some finite set } S \subseteq \mathbb{R}\}$

The topology T is called the *Zariski topology* on R.

3.19 Definition. A topological space (*X,* T) is *metrizable* if there exists a metric *ρ* on *X* such that T is the topology induced by *ρ*.

3.20 Lemma. If (X, \mathfrak{T}) is a metrizable topological space and $x, y \in X$ are points such that $x \neq y$ then *there exists an open set U ⊆* X *such that* $x ∈ U$ *and* $y ∉ U$ *.*

Proof. Exercise.

3.21 Proposition. *If X is a set containing more than one point then the antidiscrete topology on X is not metrizable.*