
3 | Open Sets
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3.1 Definition. Let ρ1 and ρ2 be two metrics on the same set X . We say that the metrics ρ1 and ρ2 are
equivalent if for every x ∈ X and for every r > 0 there exist s1, s2 > 0 such that Bρ1(x, s1) ⊆ Bρ2(x, r)and Bρ2(x, s2) ⊆ Bρ1(x, r).

3.2 Proposition. Let ρ1, ρ2 be equivalent metrics on a set X , and let µ1, µ2 be equivalent metrics on
a set Y . A function f : X → Y is continuous with respect to the metrics ρ1 and µ1 if and only if it is
continuous with respect to the metrics ρ2 and µ2.
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3.3 Example. The Euclidean metric d, the orthogonal metric ρort and the maximum metric ρmax areequivalent metrics on Rn (exercise).

3.4 Example. The following metrics on R2 are not equivalent to one another: the Euclidean metric d,the hub metric ρh, and the discrete metric ρdisc (exercise).
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3.5 Definition. Let (X, ρ) be a metric space. A subset U ⊆ X is an open set if U is a union of (perhapsinfinitely many) open balls in X : U = ⋃i∈I B(xi, ri).
X

U

3.6 Proposition. Let (X, ρ) be a metric space and let U ⊆ X . The following conditions are equivalent:
1) The set U is open.
2) For every x ∈ U there exists rx > 0 such that B(x, rx ) ⊆ U .

Proof. Exercise.
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3.7 Proposition. Let X be a set and let ρ1, ρ2 be two metrics on X . The following conditions are
equivalent:

1) The metrics ρ1 and ρ2 are equivalent.
2) A set U ⊆ X is open with respect to the metric ρ1 if and only if it is open with respect to the

metric ρ2.

3.8 Proposition. Let (X, ρ) be a metric space.
1) The sets X and ∅ are open sets.
2) If Ui is an open set for i ∈ I then the set

⋃
i∈I Ui is open.

3) If U1, U2 are open sets then the set U1 ∩ U2 is open.

Proof. Exercise.
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3.10 Proposition. Let (X, ρ), (Y , µ) be metric spaces and let f : X → Y be a function. The following
conditions are equivalent:

1) The function f is continuous.
2) For every open set U ⊆ Y the set f−1(U) is open in X .

3.11 Lemma. Let (X, ρ), (Y , µ) be metric spaces and let f : X → Y be a continuous function. If
B := B(y0, r) is an open ball in Y then the set f−1(B) is open in X .

Proof. Exercise.
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3.12 Definition. Let X be a set. A topology on X is a collection T of subsets of X satisfying thefollowing conditions:1) X,∅ ∈ T;2) If Ui ∈ T for i ∈ I then ⋃i∈I Ui ∈ T;3) If U1, U2 ∈ T then U1 ∩ U2 ∈ T.Elements of T are called open sets.A topological space is a pair (X,T) where X is a set and T is a topology on X .

3.13 Definition. Let (X,TX ), (Y ,TY ) be topological spaces. A function f : X → Y is continuous if forevery U ∈ TY we have f−1(U) ∈ TX .

3.14 Example. If (X, ρ) is a metric space then X is a topological space with the topology
T = {U ⊆ X | U is a union of open balls}We say that the topology T is induced by the metric ρ.

3.16 Example. Let X be an arbitrary set and let
T = {all subsets of X}The topology T is called the discrete topology on X . If X is equipped with this topology then we saythat it is a discrete topological space.

3.17 Example. Let X be an arbitrary set and let
T = {X,∅}The topology T is called the antidiscrete topology on X .

3.18 Example. Let X = R and let
T = {U ⊆ R | U = ∅ or U = (Rr S) for some finite set S ⊆ R}The topology T is called the Zariski topology on R.
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3.19 Definition. A topological space (X,T) is metrizable if there exists a metric ρ on X such that T isthe topology induced by ρ.

3.20 Lemma. If (X,T) is a metrizable topological space and x, y ∈ X are points such that x 6= y then
there exists an open set U ⊆ X such that x ∈ U and y 6∈ U .

Proof. Exercise.

3.21 Proposition. If X is a set containing more than one point then the antidiscrete topology on X is
not metrizable.
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