## | Open Sets

**3.1 Definition.** Let  $\varrho_1$  and  $\varrho_2$  be two metrics on the same set X. We say that the metrics  $\varrho_1$  and  $\varrho_2$  are *equivalent* if for every  $x \in X$  and for every r > 0 there exist  $s_1, s_2 > 0$  such that  $B_{\varrho_1}(x, s_1) \subseteq B_{\varrho_2}(x, r)$  and  $B_{\varrho_2}(x, s_2) \subseteq B_{\varrho_1}(x, r)$ .

**3.2 Proposition.** Let  $\varrho_1$ ,  $\varrho_2$  be equivalent metrics on a set X, and let  $\mu_1$ ,  $\mu_2$  be equivalent metrics on a set Y. A function  $f: X \to Y$  is continuous with respect to the metrics  $\varrho_1$  and  $\mu_1$  if and only if it is continuous with respect to the metrics  $\varrho_2$  and  $\mu_2$ .

**3.3 Example.** The Euclidean metric d, the orthogonal metric  $\varrho_{ort}$  and the maximum metric  $\varrho_{max}$  are equivalent metrics on  $\mathbb{R}^n$  (exercise).

**3.4 Example.** The following metrics on  $\mathbb{R}^2$  are not equivalent to one another: the Euclidean metric d, the hub metric  $\varrho_h$ , and the discrete metric  $\varrho_{disc}$  (exercise).

**3.5 Definition.** Let  $(X, \varrho)$  be a metric space. A subset  $U \subseteq X$  is an *open set* if U is a union of (perhaps infinitely many) open balls in X:  $U = \bigcup_{i \in I} B(x_i, r_i)$ .



**3.6 Proposition.** Let  $(X, \varrho)$  be a metric space and let  $U \subseteq X$ . The following conditions are equivalent:

- 1) The set U is open.
- 2) For every  $x \in U$  there exists  $r_x > 0$  such that  $B(x, r_x) \subseteq U$ .

Proof. Exercise.

**3.7 Proposition.** Let X be a set and let  $\varrho_1$ ,  $\varrho_2$  be two metrics on X. The following conditions are equivalent:

- 1) The metrics  $\varrho_1$  and  $\varrho_2$  are equivalent.
- 2) A set  $U \subseteq X$  is open with respect to the metric  $\varrho_1$  if and only if it is open with respect to the metric  $\varrho_2$ .

**3.8 Proposition.** Let  $(X, \varrho)$  be a metric space.

- 1) The sets X and  $\varnothing$  are open sets.
- 2) If  $U_i$  is an open set for  $i \in I$  then the set  $\bigcup_{i \in I} U_i$  is open.
- 3) If  $U_1$ ,  $U_2$  are open sets then the set  $U_1 \cap U_2$  is open.

Proof. Exercise.

**3.10 Proposition.** Let  $(X, \varrho)$ ,  $(Y, \mu)$  be metric spaces and let  $f : X \to Y$  be a function. The following conditions are equivalent:

- 1) The function f is continuous.
- 2) For every open set  $U \subseteq Y$  the set  $f^{-1}(U)$  is open in X.

**3.11 Lemma.** Let  $(X, \varrho)$ ,  $(Y, \mu)$  be metric spaces and let  $f: X \to Y$  be a continuous function. If  $B := B(y_0, r)$  is an open ball in Y then the set  $f^{-1}(B)$  is open in X.

Proof. Exercise.

**3.12 Definition.** Let X be a set. A *topology* on X is a collection  $\mathcal{T}$  of subsets of X satisfying the following conditions:

- 1)  $X, \emptyset \in \mathfrak{T};$
- 2) If  $U_i \in \mathcal{T}$  for  $i \in I$  then  $\bigcup_{i \in I} U_i \in \mathcal{T}$ ;
- 3) If  $U_1, U_2 \in \mathcal{T}$  then  $U_1 \cap U_2 \in \mathcal{T}$ .

Elements of T are called *open sets*.

A topological space is a pair  $(X, \mathcal{T})$  where X is a set and  $\mathcal{T}$  is a topology on X.

**3.13 Definition.** Let  $(X, \mathfrak{T}_X)$ ,  $(Y, \mathfrak{T}_Y)$  be topological spaces. A function  $f: X \to Y$  is *continuous* if for every  $U \in \mathfrak{T}_Y$  we have  $f^{-1}(U) \in \mathfrak{T}_X$ .

**3.14 Example.** If  $(X, \varrho)$  is a metric space then X is a topological space with the topology

 $\mathcal{T} = \{ U \subseteq X \mid U \text{ is a union of open balls} \}$ 

We say that the topology T is *induced by the metric*  $\varrho$ .

**3.16 Example.** Let X be an arbitrary set and let

 $\mathcal{T} = \{ \text{all subsets of } X \}$ 

The topology T is called the *discrete topology* on X. If X is equipped with this topology then we say that it is a *discrete topological space*.

**3.17 Example.** Let *X* be an arbitrary set and let

 $\mathfrak{T} = \{X, \emptyset\}$ 

The topology  $\mathcal{T}$  is called the *antidiscrete topology* on *X*.

**3.18 Example.** Let  $X = \mathbb{R}$  and let

 $\mathfrak{T} = \{ U \subseteq \mathbb{R} \mid U = \emptyset \text{ or } U = (\mathbb{R} \smallsetminus S) \text{ for some finite set } S \subseteq \mathbb{R} \}$ 

The topology  $\mathcal{T}$  is called the *Zariski topology* on  $\mathbb{R}$ .

**3.19 Definition.** A topological space  $(X, \mathcal{T})$  is *metrizable* if there exists a metric  $\varrho$  on X such that  $\mathcal{T}$  is the topology induced by  $\varrho$ .

**3.20 Lemma.** If  $(X, \mathfrak{T})$  is a metrizable topological space and  $x, y \in X$  are points such that  $x \neq y$  then there exists an open set  $U \subseteq X$  such that  $x \in U$  and  $y \notin U$ .

Proof. Exercise.

**3.21 Proposition.** If X is a set containing more than one point then the antidiscrete topology on X is not metrizable.