4 Basis, Subbasis, Subspace

4.1 Definition. Let X be a set and let \mathcal{B} be a collection of subsets of X. The collection \mathcal{B} is a *basis* on X if it satisfies the following conditions:

- 1) $X = \bigcup_{V \in \mathcal{B}} V$;
- 2) for any $V_1, V_2 \in \mathcal{B}$ and $x \in V_1 \cap V_2$ there exists $W \in \mathcal{B}$ such that $x \in W$ and $W \subseteq V_1 \cap V_2$.

4.2 Example. If (X, ϱ) is a metric space then the set $\mathcal{B} = \{B(x, r) \mid x \in X, r > 0\}$ consisting of all open balls in X is a basis on X (exercise).

4.3 Proposition. Let X be a set, and let \mathcal{B} be a basis on X. Let \mathcal{T} denote the collection of all subsets $U \subseteq X$ that can be obtained as the union of some elements of \mathcal{B} : $U = \bigcup_{V \in \mathcal{B}_1} V$ for some $\mathcal{B}_1 \subseteq \mathcal{B}$. Then \mathcal{T} is a topology on X.

Proof. Exercise.

4.4 Definition. Let \mathcal{B} be a basis on a set X and let \mathcal{T} be the topology defined as in Proposition 4.3. In such case we will say that \mathcal{B} is a *basis of the topology* \mathcal{T} and that \mathcal{T} is the *topology defined by the basis* \mathcal{B} .

4.6 Example. Consider \mathbb{R}^n with the Euclidean metric *d*. Let \mathcal{B} be the collection of all open balls $B(x, r) \subseteq \mathbb{R}^n$ such that $r \in \mathbb{Q}$ and $x = (x_1, x_2, ..., x_n)$ where $x_1, ..., x_n \in \mathbb{Q}$. Then \mathcal{B} is a basis of the Euclidean topology on \mathbb{R}^n (exercise).

4.8 Example. The set $\mathcal{B} = \{[a, b) \mid a, b \in \mathbb{R}\}$ is a basis of a certain topology on \mathbb{R} . We will call it the *arrow topology*.

4.9 Example. Let $\mathcal{B} = \{[a, b] \mid a, b \in \mathbb{R}\}$. The set \mathcal{B} is a basis of the discrete topology on \mathbb{R} (exercise).

4.10 Example. Let $X = \{a, b, c, d\}$ and let $\mathcal{B} = \{\{a, b, c\}, \{b, c, d\}\}$. The set \mathcal{B} is not a basis of any topology on X since $b \in \{a, b, c\} \cap \{b, c, d\}$, and \mathcal{B} does not contain any subset W such that $b \in W$ and $W \subseteq \{a, b, c\} \cap \{b, c, d\}$.

4.11 Proposition. Let X be a set and let S be any collection of subsets of X such that $X = \bigcup_{V \in S} V$. Let T denote the collection of all subsets of X that can be obtained using two operations:

- 1) taking finite intersections of sets in S;
- 2) taking arbitrary unions of sets obtained in 1).

Then T is a topology on X.

Proof. Exercise.

4.12 Definition. Let X be a set and let S be any collection of subsets of X such that $X = \bigcup_{V \in S} V$. The topology \mathcal{T} defined by Proposition 4.11 is called the *topology generated by* S, and the collection S is called a *subbasis* of \mathcal{T} .

4.13 Example. If $X = \{a, b, c, d\}$ and $S = \{\{a, b, c\}, \{b, c, d\}\}$ then the topology generated by S is $\mathcal{T} = \{\{a, b, c\}, \{b, c, d\}, \{b, c, d\}, \{b, c, d\}, \{b, c, d\}, \emptyset\}$.

easier to define

4.14 Proposition. Let (X, \mathcal{T}_X) , (Y, \mathcal{T}_Y) be topological spaces, and let \mathcal{B} be a basis (or a subbasis) of \mathfrak{T}_Y . A function $f: X \to Y$ is continuous if and only if $f^{-1}(V) \in \mathfrak{T}_X$ for every $V \in \mathfrak{B}$.

Proof. Exercise.

4.15 Definition. Let (X, \mathfrak{T}) be a topological space and let $Y \subseteq X$. The collection

$$\mathfrak{T}_Y = \{ Y \cap U \mid U \in \mathfrak{T} \}$$

is a topology on Y called the *subspace topology*. We say that (Y, \mathcal{T}_Y) is a *subspace* of the topological space (X, \mathcal{T}) .

4.16 Example. The unit circle S^1 is defined by

$$S^1 := \{ (x_1, x_2) \in \mathbb{R}^2 \mid x_1^2 + x_2^2 = 1 \}$$

The circle S^1 is a topological space considered as a subspace of \mathbb{R}^2 .

In general the *n*-dimensional sphere S^n is defined by

$$S^{n} := \{(x_{1}, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} \mid x_{1}^{2} + \cdots + x_{n+1}^{2} = 1\}$$

It is a topological space considered as a subspace of \mathbb{R}^{n+1} .

4.18 Proposition. Let *X* be a topological space and let *Y* be its subspace.

1) The inclusion map $j: Y \to X$ is a continuous function. 2) If Z is a topological space then a function $f: Z \to Y$ is continuous if and only if the composition $jf: Z \to X$ is continuous.

Proof. Exercise.

4.19 Proposition. Let X be a topological space and let Y be its subspace. If \mathcal{B} is a basis (or a subbasis) of X then the set $\mathcal{B}_Y = \{U \cap Y \mid U \in \mathcal{B}\}$ is a basis (resp. a subbasis) of Y.

Proof. Exercise.