5 | Closed Sets, Interior, Closure, Boundary

5.1 Definition. Let *X* be a topological space. A set $A \subseteq X$ is a *closed set* if the set $X \setminus A$ is open.

5.5 Proposition. *Let X be a topological space.*

- *1) The sets* X *,* \emptyset *are closed.*
- *2)* If $A_i \subseteq X$ is a closed set for $i \in I$ then $\bigcap_{i \in I} A_i$ is closed.
- *3)* If A_1 , A_2 are closed sets then the set $A_1 \cup A_2$ is closed.

5.7 Definition. Let (*X, ρ*) be a metric space, and let *{xn}* be a sequence of points in *X*. We say that *{x_n} converges* to a point *y* ∈ *X* if for every $ε$ > 0 there exists N > 0 such that $ρ(y, x_n)$ < *ε* for all $n > N$. We write: $x_n \rightarrow y$.

Equivalently: $x_n \to y$ if for every $\varepsilon > 0$ there exists $N > 0$ such that $x_n \in B(y, \varepsilon)$ for all $n > N$.

5.8 Proposition. *Let* (*X, ρ*) *be a metric space and let A ⊆ X. The following conditions are equivalent:*

- *1) The set A is closed in X.*
- *2) If* $\{x_n\}$ ⊆ *A and* x_n → *y then* $y \in A$ *.*

Proof. Exercise.

 \Box

5.10 Definition. Let *X* be a topological space and $y \in X$. If $U \subseteq X$ is an open set such that $y \in U$ then we say that *U* is an *open neighborhood of y*.

5.11 Definition. Let *X* be a topological space. A sequence $\{x_n\}$ ⊆ *X converges* to *y* ∈ *X* if for every open neighborhood *U* of *y* there exists $N > 0$ such that $x_n \in U$ for $n > N$.

5.12 Note. In general topological spaces a sequence may converge to many points at the same time.

5.13 Proposition. Let (X, ϱ) be a metric space and let $\{x_n\}$ be a sequence in X. If $x_n \to y$ and $x_n \to z$ *for some* $y, z \in X$ *then* $y = z$ *.*

Proof. Exercise.

 \Box

5.14 Proposition. Let *X* be a topological space and let $A ⊆ X$ be a closed set. If $\{x_n\} ⊆ A$ and $x_n \to y$ *then* $y \in A$.

Proof. Exercise.

 \Box

5.16 Example. Let $X = \mathbb{R}$ with the following topology:

 $\mathcal{T} = \{U \subseteq \mathbb{R} \mid U = \emptyset \text{ or } U = (\mathbb{R} \setminus S) \text{ for some countable set } S \subseteq \mathbb{R}\}\$

Closed sets in *X* are the whole space $\mathbb R$ and all countable subsets of $\mathbb R$. If $\{x_n\} \subseteq X$ is a sequence then $x_n \to y$ if and only if there exists $N > 0$ such that $x_n = y$ for all $n > N$ (exercise). It follows that if *A* is any (closed or not) subset of *X*, $\{x_n\} \subseteq A$, and $x_n \to y$ then $y \in A$.

5.17 Definition. Let *X* be a topological space and let *Y ⊆ X*.

- The *interior of Y* is the set lnt(*Y*) := \bigcup { U | $U \subseteq Y$ and U is open in X }.
- The *closure of Y* is the set $\overline{Y} := \bigcap \{A \mid Y \subseteq A \text{ and } A \text{ is closed in } X\}.$
- The *boundary of Y* is the set $Bd(Y) := \overline{Y} \cap (\overline{X \setminus Y})$.

5.18 Example. Consider the set $Y = (a, b]$ in \mathbb{R} :

We have:

5.19 Example. Consider the set $Y = \{(x_1, x_2) \in \mathbb{R}^2 \mid a < x_1 \le b, c \le x_2 < d\}$ in \mathbb{R}^2 :

5.20 Proposition. Let *X* be a topological space and let $Y ⊆ X$.

- *1) The set* $Int(Y)$ *is open in X. It is the biggest open set contained in Y: if U is open and* $U \subseteq Y$ *then* $U \subseteq \text{Int}(Y)$ *.*
- *2) The set Y is closed in X. It is the smallest closed set that contains Y : if A is closed and Y ⊆ A then Y ⊆ A.*

Proof. Exercise.

 \Box

5.21 Proposition. *Let X be a topological space, let Y ⊆ X, and let x ∈ X. The following conditions are equivalent:*

- *1) x ∈* Int(*Y*)
- *2) There exists an open neighborhood* U *of* x *such that* $U \subseteq Y$ *.*

5.22 Proposition. *Let X be a topological space, let Y ⊆ X, and let x ∈ X. The following conditions are equivalent:*

- *1*) $x \in \overline{Y}$
- *2) For every open neighborhood U of x we have* $U ∩ Y ≠ ∅$ *.*

Proof. Exercise.

 \Box

5.23 Proposition. *Let X be a topological space, let Y ⊆ X, and let x ∈ X. The following conditions are equivalent:*

- *1)* x ∈ Bd(Y)
- *2) For every open neighborhood U of x we have* $U ∩ Y ≠ ∅$ *and* $U \cap (X \setminus Y) \neq \emptyset$ *.*

5.24 Definition. Let *X* be a topological space. A set $Y \subseteq X$ is *dense in X* if $\overline{Y} = X$.

5.25 Proposition. *Let X be a topological space and let Y ⊆ X. The following conditions are equivalent:*

- *1) Y is dense in X*
- *2) If* $U ⊆ X$ *is an open set and* $U ≠ ∅$ *then* $U ∩ Y ≠ ∅$ *.*

5.26 Example. The set of rational numbers Q is dense in R.