8 Path Connectedness

8.1 Definition. Let *X* be a topological space. A *path* in *X* is a continuous function $\omega: [0, 1] \to X$. If $\omega(0) = x_0$ and $\omega(1) = x_1$ then we say that ω joins x_0 with x_1 .

8.2 Definition. 1) If $\omega: [0,1] \to X$ is a path in X then the *inverse* of ω is the path $\overline{\omega}$ given by $\overline{\omega}(t) = \omega(1-t)$ for $t \in [0,1]$.

2) If $\omega.\tau: [0,1] \to X$ are paths such that $\omega(1) = \tau(0)$ then the *concatenation* of ω and τ if the path $\omega * \tau$ given by

8.3 Definition. A space X is *path connected* if for every $x_0, x_1 \in X$ there is a path joining x_0 with x_1 .

8.5 Proposition. *Every path connected space is connected.*

Proof. Exercise.

8.7 Proposition. Let X be a topological space and for $i \in I$ let Y_i be a subspace of X. Assume that $\bigcup_{i \in I} Y_i = X$ and $\bigcap_{i \in I} Y_i \neq \emptyset$. If Y_i is path connected for each $i \in I$ then X is also path connected.

8.8 Definition. Let X be a topological space. A *path connected component* of X is a subspace $Y \subseteq X$ such that

- 1) *Y* is path connected
- 2) if $Y \subseteq Z \subseteq X$ and Z is path connected then Y = Z.

8.9 Proposition. *Let X be a topological space.*

- 1) For every point $x_0 \in X$ there exist a path connected component $Y \subseteq X$ such that $x_0 \in Y$.
- 2) If Y, Y' are path connected components of X then either $Y \cap Y' = \emptyset$ or Y = Y'.

Proof. Similar to the proof of Proposition 7.18.

8.10 Proposition. Let $x_0 \in X$ The path connected component $Y \subseteq X$ that contains x_0 is given by:

 $Y = \{x \in X \mid \text{there exists a path joining } x \text{ with } x_0\}$

Proof. Exercise.

8.11 Example. Let Y be the topologist's sine curve. The space Y has only one connected component (since Y is connected). On the other hand it has two path connected components:

8.12 Definition. Let *X* be a topological space.

1) X is *locally connected* if for any $x \in X$ and any open neighborhood U of x there is an open neighborhood V of x such that $V \subseteq U$ and V is connected.

2) *X* is *locally path connected* if for any $x \in X$ and any open neighborhood *U* of *x* there is an open neighborhood *V* of *x* such that $V \subseteq U$ and *V* is path connected.

8.15 Proposition. If X is locally path connected then it is locally connected.

Proof. Exercise.	
8.16 Proposition.	If a space X is locally connected then connected components of X are open in X .
Proof. Exercise.	
8.17 Proposition. <i>open in X.</i>	If a space X is locally path connected then path connected components of X are
Proof. Exercise.	

8.18 Proposition. If X is a connected and locally path connected space then X is path connected.