9 | Separation Axioms

9.1 Definition. A topological space *X satisfies the axiom* T_1 if for every points $x, y \in X$ such that *x* \neq *y* there exist open sets *U*, *V* ⊆ *X* such that *x* ∈ *U*, *y* \notin *U* and *y* ∈ *V*, *x* \notin *V*.

9.3 Proposition. *Let X be a topological space. The following conditions are equivalent:*

- *1)* X *satisfies* T_1 *.*
- *2) For every point* $x \in X$ *the set* $\{x\} \subseteq X$ *is closed.*

Proof. Exercise.

9.4 Definition. A topological space *X satisfies the axiom* T_2 if for any points $x, y \in X$ such that $x \neq y$ there exist open sets $U, V \subseteq X$ such that $x \in U$, $y \in V$, and $U \cap V = \emptyset$.

A space that satisfies the axiom *T*² is called a *Hausdorff space*.

9.6 Note. If *X* satisfies T_2 then it satisfies T_1 .

9.8 Proposition. Let *X* be a Hausdorff space and let $\{x_n\}$ be a sequence in *X*. If $x_n \to y$ and $x_n \to z$ *for some* $y, z \in X$ *then* $y = z$ *.*

Proof. Exercise.

9.9 Definition. A topological space *X satisfies the axiom* T_3 if *X* satisfies T_1 and if for each point *x* \in *X* and each closed set *A* \subseteq *X* such that *x* \notin *A* there exist open sets *U*, *V* \subseteq *X* such that *x* \in *U*, *A* \subseteq *V*, and *U* ∩ *V* = ∅.

A space that satisfies the axiom *T*³ is called a *regular space*.

9.10 Note. Since in spaces satisfying T_1 sets consisting of a single point are closed (9.3) it follows that if a space satisfies T_3 then it satisfies T_2 .

9.12 Definition. A topological space X satisfies the axiom T_4 if X satisfies T_1 and if for any closed sets $A, B \subseteq X$ such that $A \cap B = \emptyset$ there exist open sets $U, V \subseteq X$ such that $A \subseteq U, B \subseteq V$, and $U ∩ V = ∅.$

A space that satisfies the axiom *T*⁴ is called a *normal space*.

9.13 Note. If *X* satisfies T_4 then it satisfies T_3 .

9.14 Theorem. *Every metric space is normal.*

9.15 Proposition. Let *X* be a topological space satisfying T_1 . If for any pair of closed sets $A, B \subseteq X$ s *atisfying* $A \cap B = \varnothing$ *there exists a continuous function f* : $X \to [0,1]$ *such that* $A \subseteq f^{-1}(\{0\})$ *and* $B \subseteq f^{-1}(\{1\})$ *then X is a normal space.*

Proof. Exercise.

9.16 Definition. Let (X, ϱ) be a metric space. The *distance between a point* $x \in X$ *and a set* $A \subseteq X$ is the number

$$
\varrho(x,A):=\inf\{\varrho(x,a)\mid a\in A\}
$$

9.17 Lemma. *If* (X, ϱ) *is a metric space and* $A \subseteq X$ *is a closed set then* $\varrho(x, A) = 0$ *if and only if* $x \in A$.

Proof. Exercise.

 \Box

 \Box

9.18 Lemma. Let (X, ϱ) be a metric space and $A \subseteq X$. The function $\varphi \colon X \to \mathbb{R}$ given by

 $\varphi(x) = \varrho(x, A)$

is continuous.

9.19 Corollary. If (X, ϱ) is a metric space and $A, B \subseteq X$ are closed sets such that $A \cap B = \varnothing$ then *there exists a continuous function* $f: X \to [0, 1]$ *such that* $A = f^{-1}(\{0\})$ *and* $B = f^{-1}(\{1\})$ *.*

