11 | Tietze Extension
Theorem

The Urysohn Lemma, which we proved in the last chapter, shows that every normal space X is equipped
with an ample supply of continuous functions X — [0, 1]: any two closed, disjoint sets in X give one
such function. However, an inconvenient constraint is that these functions are of very special type:
they map one closed set to 0, and the other one to 1.

It is easy to modify the Urysohn Lemma to expand this collection of functions a bit:

11.1 Generalized Urysohn Lemma. Let X be a normal space and let A, B C X be closed sets such
that AN B =@. Forany a,b € R, a < b there exists a continuous function f: X — |[a, b] such that
A C f~"({a}) and B C f~1({b}).

Proof. By the Urysohn Lemma 10.1 we can find a function g: X — [0, 1] such that g(A) = {0} and
g(B) = {1}. Take f = hof, where h:[0,1] — [a, b] is any continuous function such that h(0) = a and
h(1) = b. 0

The collection of functions described by Lemma 11.1 is still very narrow: these functions are constant
when restricted to either set A or B. The main result of this chapter is to show that such restriction is
not necessary; any function defined on a closed subset of a normal space gives a function defined on
the whole space:

11.2 Tietze Extension Theorem (v.1). Let X be a normal space, let A C X be a closed subspace,
and let f: A — [a, b] be a continuous function for some [a, b] C R. There exits a continuous function
f: X —[a, b] such that f|a = f.

The main idea of the proof is to use the Urysohn Lemma 10.1 to construct functions f,: X — [a, b] for
n=1,2,... such that as n increases )_‘n|A gives ever closer approximations of f. Then we take f to be
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the limit of the sequence {f,}. We start by looking at sequences of functions and their convergence.

11.3 Definition. Let X, Y be a topological spaces and let {f,: X — Y} be a sequence of functions.
We say that the sequence {f,} converges pointwise to a function f: X — Y if for each x € X the
sequence {f,(x)} C Y converges to the point f(x).

11.4 Note. If {f,: X — Y} is a sequence of continuous functions that converges pointwise to f: X — Y
then f need not be continuous. For example, let f,: [0,1] — R be the function given by f,(x) = x".
Notice that f,(x) — O for all x € [0, 1) and that f,(1) — 1. Thus the sequence {f,} converges pointwise
to the function f: [0, 1] — R defined by

f(x) = {0 for x # 1

1 forx=1

The functions f,, are continuous but f is not.

11.5 Definition. Let X be a topological space, let (Y, g) be a metric space, and let {f,: X — Y} be a
sequence of functions. We say that the sequence {f,} converges uniformly to a function f: X — Y if
for every € > 0 there exists N > 0 such that

o(f(x). fa(x)) < €

for all x € X and for all n > N.

11.6 Note. If a sequence {f,} converges uniformly to f then it also converges pointwise to f, but the
converse is not true in general.

11.7 Proposition. Let X be a topological space and let (Y,p) be a metric space. Assume that
{fa: X = Y} is a sequence of functions that converges uniformly to f: X — Y. If all functions f, are
continuous then f is also a continuous function.

Proof. Let U C Y be an open set. We need to show that the set f~1(U) C X is open. If suffices to
check that each point xg € f~'(U) has an open neighborhood V such that V C f~'(U). Since U is
an open set there exists € > 0 such B(f(xo), €) € U. Choose N > 0 such that g(f(x), fy(x)) < § for
all x € X, and take V = f/j(B(fN(xo), £)). Since fy is a continuous function the set V' is an open
neighborhood of xp in X. It remains to show that V C f~1(U). For x € V we have:

o(f(x), f(x0)) < e(f(x), In(x)) + a(fn(x), In(x0)) + o(fn(x0), F(x0) < §+ 5+ 5 =¢

This means that f(x) € B(f(xo), €) C U, and so x € f~1(U).
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11.8 Lemma. Let X be a normal space, A C X be a closed set, and let f: A — R be a continuous
function such that for some C > 0 we have |f(x)| < C for all x € A. There exists a continuous function
g: X — R such that |g(x)| < 1C for all x € X and |f(x) — g(x)| < 3C for all x € A.

Proof. Define Y := ([—C,—%C]), Z = f_1([%C, C]). Since f: A — R is a continuous function
these sets are closed in A, but since A is closed in X the sets Y and Z are also closed in X. Since

Y NZ = & by the Generalized Urysohn Lemma 11.71 there exists a continuous function g: X — [—% %]
such that g(x) = —% for all x € Y and g(x) = % for all x € Z. It is straightforward to check that
[f(x) — g(x)| < %C for all x € A. O

Proof of Theorem 11.2. Since f takes values in an interval [a, b], we can find a number C > 0 such
that |[f(x)] < C for all x € A. For n =1,2,... we will construct continuous functions g,: X — R such
that

M) lga() < 2-(2)"" - Chorall x € X;
(i) |f(x) = X0y gilx)| < (3)"- Cforall x € A
We argue by induction. Existence of g4 follows directly from Lemma 11.8. Assume that for some

n > 1 we already have functions g1, ..., g, satisfying (i) and (ii). Apply Lemma 11.8 to the function
f—3 i_1 gk We can take gn41 := g where g is the function given by the lemma.

Let f, ;==Y }_; gk and let foo := Y 72, gk. Using condition (i) we obtain that the sequence {f,}
converges uniformly to f (exercise). Since each of the functions f, is continuous, by Proposition 11.7
we obtain that f., is a continuous function. Also, using (ii) be obtain that fo,(x) = f(x) for all x € A
(exercise).

The only remaining issue is that the function f- takes its values in R, and not in the interval [a, b].
However, it is not difficult to modify it to obtain a continuous function f: X — [a, b] such that
f(x) = foo(x) for all x € A (exercise). O

Here is another useful reformulation of Tietze Extension Theorem:
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11.9 Tietze Extension Theorem (v.2). Let X be a normal space, let A C X be a closed subspace, and
let f: A — R be a continuous function. There exits a continuous function f: X — R such that f|a = f.

Proof. It is enough to show that for any continuous function g: A — (—1,1) we can find a continuous
function g: X — (—1,1) such that g|a = g. Indeed, if this holds then given a function f: A — R let

g = hf where h: R — (—1,1) is an arbitrary homeomorphism. Then we can take f = h™'g.

Assume then that g: A — (—1,1) is a continuous function. By Theorem 11.2 there is a function
g1: X = [=1,1] such that g1|a = g. Let B:=g7'({—1,1}). The set B'is closed in X and AN B = &
since g1(A) = g(A) C (—=1,1). By Urysohn Lemma 10.7 there is a continuous function k: X — [0, 1]
such that B C k~1({0}) and A C k~1({1}). Let g(x) := k(x) - g1(x). We have:

1) if g1(x) € (—1,1) then g(x) € (—1,1)

2) if g1(x) € {—1,1} then x € Bso g(x) =0-g1(x) =0
It follows that g: X — (—1,1). Also, g is a continuous function since k and g1 are continuous. Finally,
if x € Athen g(x) =1-g1(x) = g(x), so gla = g. O

Tietze Extension Theorem holds for functions defined on normal spaces. It turns out the function
extension property is actually equivalent to the notion of normality of a space:

11.10 Theorem. Let X be a space satisfying T1. The following conditions are equivalent:

1) X is a normal space.

2) For any closed sets A, B C X such that AN B = & there is a continuous function f: X — [0,1]
such that such that A C f~1({0}) and B C f~"({1}).

3) If A C X is a closed set then any continuous function f: A — R can be extended to a continuous
function f: X — R.

Proof. The implication 1) = 2) is the Urysohn Lemma 10.1 and 2) = 1) is Proposition 9.15. The
implication 1) = 3) is the Tietze Extension Theorem 11.9. The proof of implication 3) = 1) is an
exercise.

O

Exercises to Chapter 11

E11.1 Exercise. The goal of this exercise is to fill a gap in the proof of Theorem 11.2. For a topological
space X and AC X let f: A—[a,b] and f: X — R be continuous functions satisfying f(x) = f(x) for
all x € A. Show that there exists a continuous function ': X — [a, b] such that f'(x) = f(x) for all
x € A
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E11.2 Exercise. Prove implication 3) = 1) of Theorem 11.10.

E11.3 Exercise. Let X be a normal space, let A C X be a closed subspace, and let f: A — R be a
continuous function.

a) Assume that g: X — R is a continuous function such that f(x) < g(x) for all x € A. Show that there
exists a continuous function F: X — R satisfying F|a = f and F(x) < g(x) for all x € X.

b) Assume that g, h: X — R are a continuous function such that h(x) < f(x) < g(x) for all x € A and
h(x) < g(x) for all x € X. Show that there exists a continuous function F": X — R satisfying F'|4 = f
and h(x) < F'(x) < g(x) for all x € X.

E11.4 Exercise. Recall that if X is a topological space then a subspace ¥ C X is a called a retract of
X if there exists a continuous function r: X — Y such that r(x) = x for all x € Y. Let X be a normal
space and let Y C X be a closed subspace of X such that Y = R. Show that Y is a retract of X.

E11.5 Exercise. Let X be topological space. Recall from Exercise 10.3 that a set A C X is a Gs-set if
there exists a countable family of open sets Uy, Uy, ... such that A = ﬂzoz1 U,.

a) Show that if X is a normal space and A C X is a closed Ggs-set then there exists a continuous
function f: X — [0, 1] such that A = f='({0}).

b) Show that if X is a normal space and A, B C X are closed Ggs-sets such that AN B = & then there
exists a continuous function f: X — [0, 1] such that A = f=1({0}) and B = f~1({1}).

E11.6 Exercise. Assume that we have a sequence of spaces
X1CXiCXpC...

Let Xoo = Ui~ Define a topology on X in such way that a set U C X, is open in Xy if and only
if the set UN X, is open in X, for each n=1,2,....

a) Show that a function f: X, — Y is continuous if and only if its restriction f|x,: X, — Y is
continuous for each n =1,2,....

b) Assume that for each n the space X, is normal, and that X, is closed in X,;1. Show that X, is
normal. (Hint: Use Proposition 9.15).



