
11 | Tietze Extension
Theorem

The Urysohn Lemma, which we proved in the last chapter, shows that every normal space X is equippedwith an ample supply of continuous functions X → [0, 1]: any two closed, disjoint sets in X give onesuch function. However, an inconvenient constraint is that these functions are of very special type:they map one closed set to 0, and the other one to 1.It is easy to modify the Urysohn Lemma to expand this collection of functions a bit:
11.1 Generalized Urysohn Lemma. Let X be a normal space and let A, B ⊆ X be closed sets such
that A ∩ B = ∅. For any a, b ∈ R, a < b there exists a continuous function f : X → [a, b] such that
A ⊆ f−1({a}) and B ⊆ f−1({b}).
Proof. By the Urysohn Lemma 10.1 we can find a function g : X → [0, 1] such that g(A) = {0} and
g(B) = {1}. Take f = h ◦ f , where h : [0, 1]→ [a, b] is any continuous function such that h(0) = a and
h(1) = b.
The collection of functions described by Lemma 11.1 is still very narrow: these functions are constantwhen restricted to either set A or B. The main result of this chapter is to show that such restriction isnot necessary; any function defined on a closed subset of a normal space gives a function defined onthe whole space:
11.2 Tietze Extension Theorem (v.1). Let X be a normal space, let A ⊆ X be a closed subspace,
and let f : A → [a, b] be a continuous function for some [a, b] ⊆ R. There exits a continuous function
f̄ : X → [a, b] such that f̄ |A = f .

The main idea of the proof is to use the Urysohn Lemma 10.1 to construct functions f̄n : X → [a, b] for
n = 1, 2, . . . such that as n increases f̄n|A gives ever closer approximations of f . Then we take f̄ to be
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the limit of the sequence {f̄n}. We start by looking at sequences of functions and their convergence.
11.3 Definition. Let X, Y be a topological spaces and let {fn : X → Y} be a sequence of functions.We say that the sequence {fn} converges pointwise to a function f : X → Y if for each x ∈ X thesequence {fn(x)} ⊆ Y converges to the point f (x).
11.4 Note. If {fn : X → Y} is a sequence of continuous functions that converges pointwise to f : X → Ythen f need not be continuous. For example, let fn : [0, 1] → R be the function given by fn(x) = xn.Notice that fn(x)→ 0 for all x ∈ [0, 1) and that fn(1)→ 1. Thus the sequence {fn} converges pointwiseto the function f : [0, 1]→ R defined by

f (x) = {0 for x 6= 11 for x = 1
The functions fn are continuous but f is not.
11.5 Definition. Let X be a topological space, let (Y , ρ) be a metric space, and let {fn : X → Y} be asequence of functions. We say that the sequence {fn} converges uniformly to a function f : X → Y iffor every ε > 0 there exists N > 0 such that

ρ(f (x), fn(x)) < ε

for all x ∈ X and for all n > N .
11.6 Note. If a sequence {fn} converges uniformly to f then it also converges pointwise to f , but theconverse is not true in general.
11.7 Proposition. Let X be a topological space and let (Y , ρ) be a metric space. Assume that
{fn : X → Y} is a sequence of functions that converges uniformly to f : X → Y . If all functions fn are
continuous then f is also a continuous function.

Proof. Let U ⊆ Y be an open set. We need to show that the set f−1(U) ⊆ X is open. If suffices tocheck that each point x0 ∈ f−1(U) has an open neighborhood V such that V ⊆ f−1(U). Since U isan open set there exists ε > 0 such B(f (x0), ε) ⊆ U . Choose N > 0 such that ρ(f (x), fN (x)) < ε3 forall x ∈ X , and take V = f−1
N (B(fN (x0), ε3 )). Since fN is a continuous function the set V is an openneighborhood of x0 in X . It remains to show that V ⊆ f−1(U). For x ∈ V we have:

ρ(f (x), f (x0)) ≤ ρ(f (x), fN (x)) + ρ(fN (x), fN (x0)) + ρ(fN (x0), f (x0)) < ε3 + ε3 + ε3 = ε

This means that f (x) ∈ B(f (x0), ε) ⊆ U , and so x ∈ f−1(U).
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11.8 Lemma. Let X be a normal space, A ⊆ X be a closed set, and let f : A → R be a continuous
function such that for some C > 0 we have |f (x)| ≤ C for all x ∈ A. There exists a continuous function
g : X → R such that |g(x)| ≤ 13C for all x ∈ X and |f (x)− g(x)| ≤ 23C for all x ∈ A.

Proof. Define Y := f−1([−C,−13C ]), Z := f−1([13C, C ]). Since f : A → R is a continuous functionthese sets are closed in A, but since A is closed in X the sets Y and Z are also closed in X . Since
Y ∩Z = ∅ by the Generalized Urysohn Lemma 11.1 there exists a continuous function g : X → [−C3 , C3 ]such that g(x) = −C3 for all x ∈ Y and g(x) = C3 for all x ∈ Z . It is straightforward to check that
|f (x)− g(x)| ≤ 23C for all x ∈ A.
Proof of Theorem 11.2. Since f takes values in an interval [a, b], we can find a number C > 0 suchthat |f (x)| ≤ C for all x ∈ A. For n = 1, 2, . . . we will construct continuous functions gn : X → R suchthat(i) |gn(x)| ≤ 13 · (23)n−1 · C for all x ∈ X ;(ii) ∣∣f (x)−∑n

i=1 gi(x)∣∣ ≤ (23)n · C for all x ∈ A.We argue by induction. Existence of g1 follows directly from Lemma 11.8. Assume that for some
n ≥ 1 we already have functions g1, . . . , gn satisfying (i) and (ii). Apply Lemma 11.8 to the function
f −

∑n
k=1 gk . We can take gn+1 := g where g is the function given by the lemma.

Let f̄n := ∑n
k=1 gk and let f̄∞ := ∑∞

k=1 gk . Using condition (i) we obtain that the sequence {f̄n}converges uniformly to f̄ (exercise). Since each of the functions f̄n is continuous, by Proposition 11.7we obtain that f̄∞ is a continuous function. Also, using (ii) be obtain that f̄∞(x) = f (x) for all x ∈ A(exercise).The only remaining issue is that the function f̄∞ takes its values in R, and not in the interval [a, b].However, it is not difficult to modify it to obtain a continuous function f̄ : X → [a, b] such that
f̄ (x) = f̄∞(x) for all x ∈ A (exercise).
Here is another useful reformulation of Tietze Extension Theorem:
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11.9 Tietze Extension Theorem (v.2). Let X be a normal space, let A ⊆ X be a closed subspace, and
let f : A → R be a continuous function. There exits a continuous function f̄ : X → R such that f̄ |A = f .

Proof. It is enough to show that for any continuous function g : A → (−1, 1) we can find a continuousfunction ḡ : X → (−1, 1) such that ḡ|A = g. Indeed, if this holds then given a function f : A → R let
g = hf where h : R→ (−1, 1) is an arbitrary homeomorphism. Then we can take f̄ = h−1ḡ.Assume then that g : A → (−1, 1) is a continuous function. By Theorem 11.2 there is a function
g1 : X → [−1, 1] such that g1|A = g. Let B := g−11 ({−1, 1}). The set B is closed in X and A ∩ B = ∅since g1(A) = g(A) ⊆ (−1, 1). By Urysohn Lemma 10.1 there is a continuous function k : X → [0, 1]such that B ⊆ k−1({0}) and A ⊆ k−1({1}). Let ḡ(x) := k(x) · g1(x). We have:1) if g1(x) ∈ (−1, 1) then ḡ(x) ∈ (−1, 1)2) if g1(x) ∈ {−1, 1} then x ∈ B so ḡ(x) = 0 · g1(x) = 0It follows that ḡ : X → (−1, 1). Also, ḡ is a continuous function since k and g1 are continuous. Finally,if x ∈ A then ḡ(x) = 1 · g1(x) = g(x), so ḡ|A = g.
Tietze Extension Theorem holds for functions defined on normal spaces. It turns out the functionextension property is actually equivalent to the notion of normality of a space:
11.10 Theorem. Let X be a space satisfying T1. The following conditions are equivalent:

1) X is a normal space.
2) For any closed sets A, B ⊆ X such that A ∩ B = ∅ there is a continuous function f : X → [0, 1]

such that such that A ⊆ f−1({0}) and B ⊆ f−1({1}).
3) If A ⊆ X is a closed set then any continuous function f : A → R can be extended to a continuous

function f̄ : X → R.

Proof. The implication 1) ⇒ 2) is the Urysohn Lemma 10.1 and 2) ⇒ 1) is Proposition 9.15. Theimplication 1) ⇒ 3) is the Tietze Extension Theorem 11.9. The proof of implication 3) ⇒ 1) is anexercise.

Exercises to Chapter 11

E11.1 Exercise. The goal of this exercise is to fill a gap in the proof of Theorem 11.2. For a topologicalspace X and A ⊆ X let f : A → [a, b] and f̄ : X → R be continuous functions satisfying f̄ (x) = f (x) forall x ∈ A. Show that there exists a continuous function f̄ ′ : X → [a, b] such that f̄ ′(x) = f (x) for all
x ∈ A.
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E11.2 Exercise. Prove implication 3) ⇒ 1) of Theorem 11.10.
E11.3 Exercise. Let X be a normal space, let A ⊆ X be a closed subspace, and let f : A → R be acontinuous function.a) Assume that g : X → R is a continuous function such that f (x) ≤ g(x) for all x ∈ A. Show that thereexists a continuous function F : X → R satisfying F|A = f and F (x) ≤ g(x) for all x ∈ X .b) Assume that g, h : X → R are a continuous function such that h(x) ≤ f (x) ≤ g(x) for all x ∈ A and
h(x) ≤ g(x) for all x ∈ X . Show that there exists a continuous function F ′ : X → R satisfying F ′|A = fand h(x) ≤ F ′(x) ≤ g(x) for all x ∈ X .
E11.4 Exercise. Recall that if X is a topological space then a subspace Y ⊆ X is a called a retract of
X if there exists a continuous function r : X → Y such that r(x) = x for all x ∈ Y . Let X be a normalspace and let Y ⊆ X be a closed subspace of X such that Y ∼= R. Show that Y is a retract of X .
E11.5 Exercise. Let X be topological space. Recall from Exercise 10.3 that a set A ⊆ X is a Gδ-set ifthere exists a countable family of open sets U1, U2, . . . such that A = ⋂∞n=1 Un.a) Show that if X is a normal space and A ⊆ X is a closed Gδ-set then there exists a continuousfunction f : X → [0, 1] such that A = f−1({0}).b) Show that if X is a normal space and A,B ⊆ X are closed Gδ-sets such that A ∩ B = ∅ then thereexists a continuous function f : X → [0, 1] such that A = f−1({0}) and B = f−1({1}).
E11.6 Exercise. Assume that we have a sequence of spaces

X1 ⊆ X1 ⊆ X2 ⊆ . . .
Let X∞ = ⋃∞n=1. Define a topology on X∞ in such way that a set U ⊆ X∞ is open in X∞ if and onlyif the set U ∩ Xn is open in Xn for each n = 1, 2, . . . .a) Show that a function f : X∞ → Y is continuous if and only if its restriction f |Xn : Xn → Y iscontinuous for each n = 1, 2, . . . .b) Assume that for each n the space Xn is normal, and that Xn is closed in Xn+1. Show that X∞ isnormal. (Hint: Use Proposition 9.15).


