schedule
resources
Discord
Gradescope
Previous module:
schedule
User guide
1. Some set theory
2. Metric spaces
3. Open sets
4. Basis, subbasis, subspace
5. Closed sets
6. Continuous functions
7. Connectedness
8. Path connectedness
9. Separation axioms
10. Urysohn lemma
11. Tietze extension theorem
12. Urysohn metrization theorem
13. Metrization of manifolds
14. Compact spaces
15. Heine-Borel theorem
16. Compact metric spaces
17. Tychonoff theorem
18. Compactification
19. Quotient spaces
12. Urysohn metrization theorem
Notes
Complete lecture notes
Blank lecture notes
Videos
Part 1 (page 88)
Part 2 (page 89)
Part 3 (pages 90-92)
Part 4 (page 93-94)
Part 5 (page 95)
Part 6 (page 96)
Page links
Page 88: Introduction.
Page 89: Embeddings of topological spaces.
Page 90: Product topology.
Page 91: Continuous functions on product spaces.
Page 92: Products of metrizable spaces.
Page 93: Separating families of functions.
Page 94: Embedding lemma.
Page 95: Proof of the Urysohn metrization theorem.
Page 96: Nagata-Smirnov metrization theorem.
Previous section:
11. Tietze extension theorem
Next section:
13. Metrization of manifolds